

PHOTON IS OUR BUSINESS

Driver circuits for CMOS linear image sensor

C10808 series

High-precision driver circuits with variable integration time function

The C10808 series is a driver circuit specifically designed for the Hamamatsu S10121 to S10124 series (-01), S15908-512Q, S15909-1024Q current-output type CMOS linear image sensors. The C10808 series driver circuit supplies various timing signals necessary for image sensor operation and also processes analog video signal from an image sensor with low noise. All that is needed to operate the C10808 series driver circuit are two external control signals (MStart, MCLK) and a power supply (±15 V). Multichannel detector head controller C7557-01 is available (sold separately). The dedicated software allows you to control and collect data on the C10808 series from the PC.

Note: Contact us if you connect with the C7557-01.

Features

Variable integration time function

- Excellent output linearity
- Boxcar output waveform
- High-speed readout (C10808)
- Low noise (C10808-01)
- Power suppy: ±15 V operation

- Applications

Control and data acquisition of CMOS linear image sensor (S10121 to S10124 series, S15908-512Q, S15909-1024Q)

Absolute maximum ratings

Parameter		Symbol	Condition	Value	Unit
Cumply voltage	Positive power supply	+Vs	Ta=25 °C	+20	V
Supply voltage	Negative power supply	-Vs	Ta=25 °C	-20	v
Operating temperature ^{*1}		Topr		0 to +50	°C
Storage temperature ^{*1}		Tstg		-10 to +60	°C

*1: No dew condensation

When there is a temperature difference between a product and the surrounding area in high humidity environment, dew condensation may occur on the product surface. Dew condensation on the product may cause deterioration in characteristics and reliability. Note: Exceeding the absolute maximum ratings even momentarily may cause a drop in product quality. Always be sure to use the

product within the absolute maximum ratings.

Specifications (Ta=25 °C)

Parameter		Symbol	C10808			C10808-01			Unit
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unic
Cupply voltage	Positive power supply	+Vs	+14.5	+15.0	+15.5	+14.5	+15.0	+15.5	V
Supply voltage	Negative power supply	-Vs	-14.5	-15.0	-15.5	-14.5	-15.0	-15.5	V
Current	Positive power supply (+15 V)	+Is	+20	+30	+40	+20.5	+28	+35.5	mA
consumption	Negative power supply (-15 V)	-Is	-10	-15	-20	-8	-13	-18	mA

Electrical characterisitics (Ta=25 °C, Vs=±15 V, unless otherwise noted)

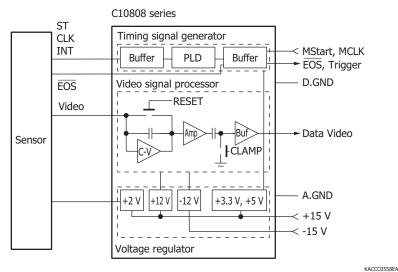
Analog circuit

Parameter		Symbol	C10808			C10808-01			Unit
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Charge-to-voltage conversion		Gc	-	0.065	-	-	0.065	-	V/pC
Data rate MCLK/4	S10121/S10124 series, S15908-512Q, S15909-1024Q	fvo	-	-	250	-	-	62.5	kHz
MCLN/4	S10122/S10123 series		-	-	500	-	-	62.5	

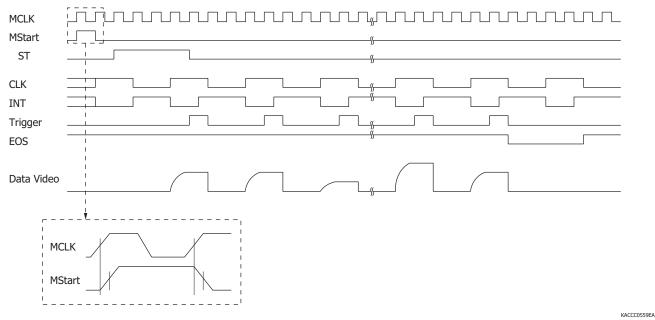
Note: You must change feedback capacitance (Cf) of the first-stage integration amplifier in the circuit according to the equipped sensor and usage conditions. For details, refer to the instruction manual.

Digital circuit

Parameter			Symbol	Min.	Тур.	Max.	Unit
		Input voltage	Vms(H)	2.0	5.0	5.5	- v
	Master start pulse	Input voltage	Vms(L)	0	-	0.8	v
	MStart	Pulse width	tpwøms	1/fømc	-	-	ns
	(Positive logic)	Rise time	trøms	-	-	50	ns
		Fall time	tføms	-	-	50	ns
Input		Transitiveltere	Vmc(H)	2.0	5.0	5.5	- v
		Input voltage	Vmc(L)	0	-	0.8	- V
	Master clock pulse	Pulse width	tpwømc	30	-	-	ns
	MCLK	Rise time	trømc	-	-	20	ns
	(Positive logic)	Fall time	tfømc	-	-	20	ns
		C10808	fømc	-	-	1*², 2*³	MHz
		Frequency C10808-01		-	-	250	kHz
		Output voltage	Vtrig(H)	3.8	-	-	- V
	Trigger pulse	Output voltage	Vtrig(L)	0	-	0.44	
	Trigger	Pulse width	tpwtrig	-	1/fømc	-	ns
	(Positive logic)	Rise time	trtrig	-	-	100	ns
Output		Fall time	tftrig	-	-	100	ns
Out		Output valta sa	Veos(H)	3.8	-	-	- V
0	End of scan	Output voltage	Veos(L)	0	-	0.44	- V
	EOS	Pulse width	tpweos	-	2/fømc	-	ns
	(Negative logic)	Rise time	treos	-	-	100	ns
		Fall time	tfeos	-	-	100	ns


*2: With S10121/S10124 series, S15908-512Q, S15909-1024Q mounted

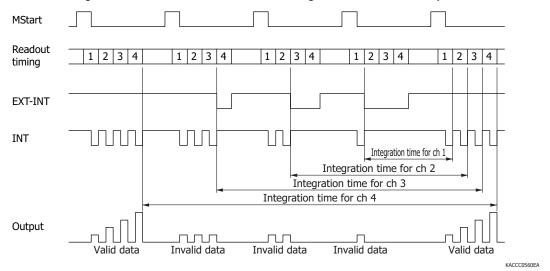
*3: With S10122/S10123 series, S15908-512Q, S15909-1024Q mounted



Driver circuits for CMOS linear image sensor

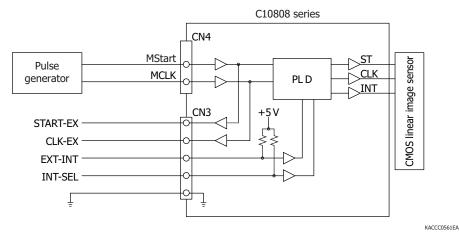
Block diagram

Timing chart (Standard operation: when not using variable integration time function of CMOS linear image sensor)



Variable integration time function

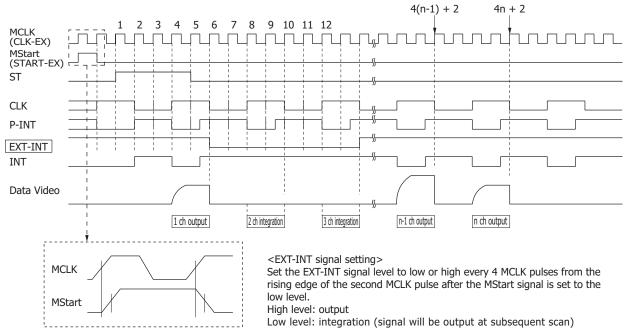
By controlling the INT signal, the integration time for each pixel can be changed to any length that is an integer multiple of one readout period. When the INT signal is set to "high" at signal readout timing of a specified pixel, then no signal is output from that pixel and integration continues. Using this function to lengthen the integration time of specified pixels, making it possible to effectively detect weak light signal components.


Timing chart

(Concept view showing the settings to double, triple and quadruple the integration times at channels 2, 3 and 4, respectively, by using the variable integration time function on the basis of the integration time at channel 1.)

Connection diagram

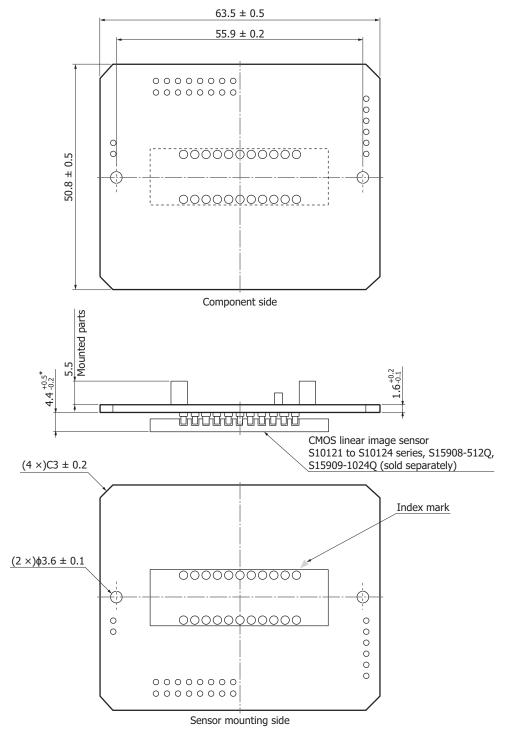
To use the variable integration time function, the EXT_IN and INT_SEL signals must be input to the CN3 connector from the external circuit.


Driver circuits for CMOS linear image sensor

Timing chart (when using variable integration time function of CMOS linear image sensor)

Synchronize the external EXT-INT signal with the CLK-EX (MCLK) and START-EX (MStart) from the driver circuit. Then set the EXT-INT signal to either of the pixel output level (high level) or pixel integration level (low level) for every output period (every 4 MCLK pulses) of each pixel, and input it to the driver circuit.

The integration time of each pixel can be changed by setting the EXT-INT signal level every 4 MCLK pulses in the interval from the second MCLK pulse after the START-EX (MStart) signal is set to the low level to the 4n + 2MCLK (n: number of pixels of CMOS linear image sensor to be used).


The P-INT signal is generated inside the circuit and is used to output the INT signal by OR (logical addition) on the inverted EXT-INT signal. Therefore, the sensor operates in normal mode when the EXT-INT signal is fixed at the high level or CN3 is not connected.

KACCC0562EA

Dimensional outline (unit: mm)

* When CMOS linear image sensor pins are fully inserted into board.

KACCA0278ED

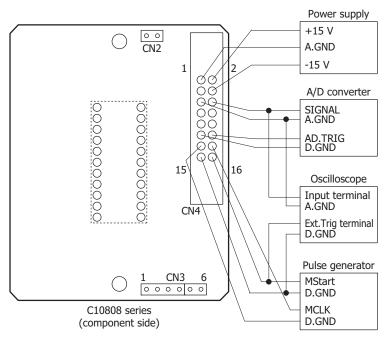
Note: Mount the connector on the component side [see connection example (P.7)].

Pin connections

For external input/output [CN4 recommended connector: FAP-16-07#2 (made by Yamaichi Electronics)]

Pin no.	Terminal name	Description	Input/Output
1	A.GND	Analog ground	-
2	+15 V	Positive power supply	Input
3	A.GND	Analog ground	-
4	-15 V	Negative power supply	Input
5	A.GND	Analog ground	-
6	Data Video	Analog video output signal, positive polarity	Output
7	A.GND	Analog ground	-
8	A.GND	Analog ground	-
9	D.GND	Digital ground	-
10	EOS	Digital output signal for indicating end of scan of image sensor, negative logic	Output
11	D.GND	Digital ground	-
12	Trigger	Digital output signal for A/D conversion, positive logic	Output
13	D.GND	Digital ground	-
14	MCLK	Digital input signal for circuit operation The circuit operates at rising edge of MCLK pulse.	Input
15	D.GND	Digital ground	-
16	MStart	Digital input signal for resetting the circuit. Positive logic. Interval of MStart pulses equals the integration time.	Input

For variable integration time function [CN3 recommended connector: R614-83-422 (made by PRECI-DIP)]


Pin no.	Terminal name	Description	Input/Output
1	START-EX	Signal for timing synchronization Same as MStart that is input from the pulse generator, HCMOS level	Output
2	CLK-EX	Signal for timing start Same as MCLK that is input from the pulse generator, HCMOS level	Output
3	EXT-INT	External signal for variable integration time function Used to fix the INT signal generated internally in the circuit to the low level. High level period: outputs the internal INT signal as it is so that pixel signals are output. Low level period: fixes the internal INT signal to the low level and integrates pixel signals. TTL level	Input
4	INT-SEL	No connection or high level input (Unused)	Input
5	D.GND	Digital ground	-
6	Vcc	+5 V output (supply current: 100 mA max.)	-

Note: When not using the variable integration time function, keep the EXT-INT signal set at the high level or leave the CN3 connector unconnected. (When in an open state, the EXT-INT is pulled up and set to the high level input.)

Connection example

(Standard operation: when not using variable integration time function of CMOS linear image sensor)

Note: Mount the connector at CN4 on the component side. Install the CMOS linear image sensor into position while aligning pin no. 1 with the index mark (pin no. 1) on the back side of the C10808 series.

KACCC0563EB

Related information

www.hamamatsu.com/sp/ssd/doc_en.html

- Precautions
- Disclaimer

Information described in this material is current as of June 2021.

Product specifications are subject to change without prior notice due to improvements or other reasons. This document has been carefully prepared and the information contained is believed to be accurate. In rare cases, however, there may be inaccuracies such as text errors. Before using these products, always contact us for the delivery specification sheet to check the latest specifications.

The product warranty is valid for one year after delivery and is limited to product repair or replacement for defects discovered and reported to us within that one year period. However, even if within the warranty period we accept absolutely no liability for any loss caused by natural disasters or improper product use. Copying or reprinting the contents described in this material in whole or in part is prohibited without our prior permission.

www.hamamatsu.com

HAMAMATSU PHOTONICS K.K., Solid State Division

1126-1 Ichino-cho, Higashi-ku, Hamamatsu City, 435-8558 Japan, Telephone: (81)53-434-3311, Fax: (81)53-434-5184 U.S.A: Hamamatsu Corporation: 360 Foothill Road, Bridgewater, NJ. 08807, U.S.A., Telephone: (1)908-231-0960, Fax: (1)908-231-1218, E-mail: usa@hamamatsu.com Germany: Hamamatsu Photonics Deutschland GmbH: Arzbergerst: 10, D-82211 Herrsching am Ammersee, Germany, Telephone: (49)8152-375-0, Fax: (49)8152-265-8, E-mail: info@hamamatsu.de France: Hamamatsu Photonics France S.A.R.L: 19, Rue du Saule Trapu, Parc du Moulin de Massy, 91882 Massy Cedex, France, Telephone: (33)1 69 53 71 00, Fax: (33)1 69 53 71 10, E-mail: info@hamamatsu.de United Kingdom: Hamamatsu Photonics KL Limited: 2 Howard Court, 10 Tewin Road, Welvyn Garden City, Hertfordshire AL7 18W, UK, Telephone: (44)1707-294888, Fax: (44)1707-325777, E-mail: info@hamamatsu.co.uk North Europe: Hamamatsu Photonics Norden AB: Torshamsgatan 35 16440 Kista, Sweden, Telephone: (46)8-509 031 00, Fax: (46)8-509 031 01, E-mail: Info@hamamatsu.se Italy: Hamamatsu Photonics Italia S.r.I.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 33, Fax: (39)02-93 58 17 41, E-mail: info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 41, E-mail: info@hamamatsu.it China: Hamamatsu Photonics Talia S.r.I.: Strada della Moia, 1 int. 6, 20044 Arese (Milano), Italy, Telephone: (39)02-93 58 17 41, E-mail: info@hamamatsu.it Taliwan: Hamamatsu Photonics Taliwan Co., Ltd.: 8F-3, No. 158, Section2, Gongdao 5th Road, East District, Hsinchu, 300, Taiwan R.O.C. Telephone: (886)3-659-0080, Fax: (886)3-659-0081, E-mail: info@hamamatsu.com.tw